The 2022 ICPC Asia Shenyang Regional Contest (The 1st Universal Cup, Stage 1: Shenyang)

IDDifficultyTopicStatus
AImplementation, Greedy
B
C0:34:09 (+1)
D⭐⭐Binary Search, Greedy0:06:36
E⭐⭐⭐Math, Number theory, Implementation(Upsolved)
F3:21:40
GImplementation, Greedy
H
IImplementation0:48:18 (+1)
J
K
L⭐⭐Math, Implementation, Brute Force4:16:23 (+2)
M⭐⭐Computational Geometry

A. Orders

  • 题意 每天可加工kk 个产品,在第aia_i 天消耗bib_i 个产品,判断是否有解。

  • 思路kaibika_i\geqslant\sum{b_i}

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    void eachT() {
    int n = read(), k = read();
    vector<pair<int, int> > a(n);
    for (auto& i : a) i.f = read(), i.s = read();
    sort(a.begin(), a.end());
    ll sum = 0;
    for (auto i : a) {
    sum += i.s;
    if (1ll * i.f * k < sum) return void(printf("No\n"));
    }
    printf("Yes\n");
    }

B. Building Company

D. Fast and Fat

  • 题意nn 个人分别有其viv_iwiw_i。每个人可选择背至多一个人,当ii 背着jj 时,若wi>wjw_i>w_j, 则viv_i 不变,否则vi:=vi(wjwi)v_i:=v_i - (w_j - w_i)。求所有有未被背负的人中最小的vv 的最大值。

  • 思路 二分答案为xxvi<xv_i<x 的人必须被背起,对于vixv_i\geqslant x 的人,希望背之后仍有vixv_i\geqslant x。依表达式vi:=(vi+wi)wjv_i:=(v_i+w_i) - w_j 知,贪心地选择让最大的vi+wiv_i+w_i 背最大的wjw_j,以此类推,是最优策略。

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    void eachT() {
    int n = read();
    vector<pii> a;
    int l = 1e9, r = 1, mid = -1;
    for (int i = 0; i < n; i++) {
    int v = read(), w = read();
    a.push_back({ v,w });
    l = min(l, v); r = max(r, v);
    }
    auto half = [&](ll x) {
    vector<pii> top, back;
    for (auto i : a) {
    if (i.f < x) top.push_back(i);
    else back.push_back(i);
    }
    sort(top.begin(), top.end(), [&](pii n1, pii n2) { return n1.s > n2.s; });
    sort(back.begin(), back.end(), [&](pii n1, pii n2) { return n1.f + n1.s > n2.f + n2.s; });
    if (top.size() > back.size()) return 0;
    for (int i = 0; i < top.size(); ++i) {
    if (back[i].f - top[i].s + back[i].s < x) return 0;
    }
    return 1;
    };
    while (l <= r) { mid = l + r >> 1; if (half(mid)) l = mid + 1; else r = mid - 1; }
    printf("%d\n", r);
    }

E. Math Problem

  • 题意 给定n,k,mn,k,m,可任意多次花费aann 变为kn+x, 0x<kkn + x ,~ 0 \leqslant x< k,或花费bbnn 变为nk\lfloor\frac nk\rfloor,求将nn 变为mm倍数(multiple) 的最小花费。

  • 思路 两个操作对应kk 进制下的「补末位」和「删末位」操作。因操作方法不惟一,且位数很少,枚举删的位数。(止步于此,可能是被进制局限了) 继续枚举补的位数,虽然补的数无法确定,但它有一个范围,只要范围内存在mm 的倍数即保证有解。

    具体地说,对nn 进行xx 次乘法操作后的取值区间是[nkx, (n+1)kx1]\left[nk^x,~ (n+1)k^x-1 \right]。要判断区间(l,r]\left(l,r\right] 中是否存在mm 的倍数,只需判断lm<rm\lfloor\frac{l}{m}\rfloor < \lfloor\frac rm\rfloor,或l(lmodm)+mrl-(l\bmod m)+m \geqslant r,等价于(lmodm)+lenm(l\bmod m)+len \geqslant m,使用后者的优势在于,避免了计算高次幂导致的溢出。

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    void eachT() {
    ll n = read(), k = read(), m = read(), a = read(), b = read();
    ll ans = (ll)8e18;
    if (k == 1 && n % m) ans = -1;
    else for (ll bcnt = 0; ; bcnt += b) {
    ll l = n % m, len = 1;
    for (ll acnt = 0;; acnt += a) {
    if (l == 0 || l + len > m) { ans = min(ans, acnt + bcnt); break; }
    l *= k, len *= k, l %= m;
    }
    if (!n || !ans) break;
    n /= k;
    }
    printf("%lld\n", ans);
    }

G. Matching

  • 题意 给定序列aa,按 [1] 以下规则构造出一张无向图GG:若ij=aiaji - j = a_i - a_j,则GG 中将存在一条连接节点iijj 的无向边,其边权为ai+aja_i + a_j,求GG 中所有边的边权之和最大的 匹配(matching[1:1])

  • 思路aiia_i-i 为键存入 map,对每个 map 贪心地按边权从大到小选择偶数个。

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    void eachT() {
    int n = read();
    map<int, vector<int> > mp;
    for (int i = 1; i <= n; ++i) {
    int x = read();
    mp[x - i].push_back(x);
    }
    ll ans = 0;
    for (auto [j, v] : mp) {
    sort(v.begin(), v.end(), greater<int>());
    for (int i = 1; i < v.size(); i += 2) {
    if (v[i] + v[i - 1] >= 0) ans += v[i] + v[i - 1];
    }
    }
    printf("%lld\n", ans);
    }

I. Three Dice

  • 题意 能否掷出三只骰子,使得朝上的面的红色点数之和为aa,黑色点数之和为bb

  • 思路 循环枚举。

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    void eachT() {
    int a = read(), b = read();
    int ta[] = { 0,1,0,0,1,0,0,0 };
    for (int i = 1; i <= 6; ++i)
    for (int j = 1; j <= 6; ++j)
    for (int k = 1; k <= 6; ++k) {
    int sum[2] = { 0 };
    sum[ta[i]] += i;
    sum[ta[j]] += j;
    sum[ta[k]] += k;
    if (sum[1] == a && sum[0] == b)
    return void(printf("Yes\n"));
    }
    printf("No\n");
    }

L. Tavern Chess

  • 题意 模拟《炉石传说》,求双方获胜概率。

  • 思路 模拟。注意概率需要「加权」,即在第一轮有一种情形获胜的概率与在第二轮有一种情形获胜的概率是不同的,后者需要将本轮的概率乘上上一轮为判别胜负的概率。

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    int n, m;

    struct PROBABILITY {
    double a, b, t;
    };

    struct MINION {
    int a, h, w, die = 0;
    int dies;
    };

    PROBABILITY dfs(bool op, vector<MINION> a, vector<MINION> b, int ta = 0, int tb = 0) {
    PROBABILITY ans = { 0,0,0 };

    if (op) {
    int anum = ta;
    while (a[anum].die == 1) {
    anum = (anum + 1) % n;
    }

    for (int bnum = 0; bnum < b.size(); ++bnum) {
    if (b[bnum].die == 1) continue;

    vector<MINION> atmp = a, btmp = b;
    atmp[anum].h -= btmp[bnum].a;
    atmp[anum].w += 1;
    btmp[bnum].h -= atmp[anum].a;

    if (atmp[anum].h <= 0) {
    atmp[anum].die = 1;
    atmp[0].dies += 1;
    }
    if (btmp[bnum].h <= 0) {
    btmp[bnum].die = 1;
    btmp[0].dies += 1;
    }

    if (atmp[0].dies == n && btmp[0].dies == m) {
    ans.t += 1.0;
    } else if (atmp[0].dies == n) {
    ans.b += 1.0;
    } else if (btmp[0].dies == m) {
    ans.a += 1.0;
    } else {
    PROBABILITY tmp = dfs(op ^ 1, atmp, btmp, (anum + 1) % n, tb);
    ans.a += tmp.a / (tmp.a + tmp.b + tmp.t);
    ans.b += tmp.b / (tmp.a + tmp.b + tmp.t);
    ans.t += tmp.t / (tmp.a + tmp.b + tmp.t);
    }
    }



    } else {
    int bnum = tb;
    while (b[bnum].die == 1) {
    bnum = (bnum + 1) % m;
    }
    for (int anum = 0; anum < a.size(); ++anum) {
    if (a[anum].die == 1) continue;

    vector<MINION> atmp = a, btmp = b;
    btmp[bnum].h -= atmp[anum].a;
    btmp[bnum].w += 1;
    atmp[anum].h -= btmp[bnum].a;

    if (atmp[anum].h <= 0) {
    atmp[anum].die = 1;
    atmp[0].dies += 1;
    }
    if (btmp[bnum].h <= 0) {
    btmp[bnum].die = 1;
    btmp[0].dies += 1;
    }

    if (atmp[0].dies == n && btmp[0].dies == m) {
    ans.t += 1.0;
    } else if (atmp[0].dies == n) {
    ans.b += 1.0;
    } else if (btmp[0].dies == m) {
    ans.a += 1.0;
    } else {
    PROBABILITY tmp = dfs(op ^ 1, atmp, btmp, ta, (bnum + 1) % m);
    ans.a += tmp.a / (tmp.a + tmp.b + tmp.t);
    ans.b += tmp.b / (tmp.a + tmp.b + tmp.t);
    ans.t += tmp.t / (tmp.a + tmp.b + tmp.t);
    }
    }
    }

    return ans;
    }

    void eachT() {
    n = read(), m = read();

    vector<MINION> a(n), b(m);
    for (auto& i : a) i.a = i.h = read(), i.w = 0;
    for (auto& i : b) i.a = i.h = read(), i.w = 0;

    PROBABILITY ans;
    if (a.size() < b.size()) {
    ans = dfs(0, a, b);
    } else if (a.size() > b.size()) {
    ans = dfs(1, a, b);
    } else {
    ans = dfs(0, a, b);
    PROBABILITY tmp2 = dfs(1, a, b);
    ans.a += tmp2.a;
    ans.b += tmp2.b;
    ans.t += tmp2.t;
    }
    printf("%.12lf ", ans.a / (ans.a + ans.b + ans.t));
    printf("%.12lf ", ans.b / (ans.a + ans.b + ans.t));
    printf("%.12lf ", ans.t / (ans.a + ans.b + ans.t));
    }
  • 变式 模拟《Super Auto Pets》,求在所有的排队情形中,双方获胜概率。

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    int a_atk[maxN], a_hp[maxN], b_atk[maxN], b_hp[maxN];
    void eachT() {
    int n = read(), m = read();
    for (int i = 0; i < n; ++i) a_hp[i] = a_atk[i] = read();
    for (int j = 0; j < m; ++j) b_hp[j] = b_atk[j] = read();

    int alice = 0, bob = 0, tie = 0;

    std::sort(a_atk, a_atk + n);
    do {
    for (int bnum = 0; bnum < n; ++bnum) a_hp[bnum] = a_atk[bnum];

    std::sort(b_atk, b_atk + m);
    do {
    for (int j = 0; j < m; ++j) b_hp[j] = b_atk[j];

    int bnum = 0, j = 0;
    while (iLoveCUC) {
    a_hp[bnum] -= b_atk[j];
    b_hp[bnum] -= a_atk[j];
    if (a_hp[bnum] <= 0) ++bnum;
    if (b_hp[j] <= 0) ++j;
    if (bnum == n && j == m) {
    tie++;
    break;
    }
    if (bnum == n) {
    bob++;
    break;
    }
    if (j == m) {
    alice++;
    break;
    }
    }

    } while (std::next_permutation(b_atk, b_atk + m));
    } while (std::next_permutation(a_atk, a_atk + n));

    printf("%.12lf ", alice / (alice + bob + tie));
    printf("%.12lf ", bob / (alice + bob + tie));
    printf("%.12lf ", tie / (alice + bob + tie));
    }

M. Computational Geometry

  • 题意 给定nn 个顶点的凸多边形PP,需要选择PP 的三个顶点记为A,B,CA,B,C(按逆时针顺序),且BB 沿逆时针方向到CC 之间恰有kk 条边。将由线段AB,ACAB,AC,以及BBCC 之间的kk 条边围成的k+2k + 2 边形记作QQ。 求QQ 可能的最大面积SQS_Q

  • 思路SQ=SBC+SABCS_Q=S_{B\dots C}+S_{\triangle ABC},枚举BB,则B,CB,C 已经确定,AA 需取距离直线BCBC 最远的点,用三分法解决 (赛时三分法的符号反了) ,时间复杂度Θ(nlogn)\Theta(n\log n)

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    void eachT() {
    int n = read(), k = read();
    vector<pair<int, int> > pos(n);
    for (int i = 0; i < n; ++i) pos[i].f = read(), pos[i].s = read();

    auto getarea = [&](int i, int j, int k) {
    i %= n, j %= n, k %= n;
    ll x1 = pos[i].f, y1 = pos[i].s;
    ll x2 = pos[j].f, y2 = pos[j].s;
    ll x3 = pos[k].f, y3 = pos[k].s;
    ll _ans = x1 * y2 + x2 * y3 + x3 * y1 - x1 * y3 - x2 * y1 - x3 * y2;
    return abs(_ans);
    };

    ll area = 0, ans = 0;
    for (int i = 0; i < k; ++i) area += getarea(0, i, i + 1);

    auto solve = [&](int a, int b) {
    ll _ans = 0;
    int lt = a, rt = b, lm = -1, rm = -1;
    while (lt + 2 < rt) {
    lm = (lt * 2 + rt) / 3, rm = (rt * 2 + lt) / 3;
    if (getarea(lm, a, b) < getarea(rm, a, b)) lt = lm;
    else rt = rm;
    }
    for (int tt = lt; tt <= rt; ++tt)
    _ans = max(_ans, getarea(a, b, tt));
    return _ans;
    };

    for (int i = 0; i <= n; ++i) {
    ans = max(ans, area + solve(i + k, i + n));
    area += getarea(i + k + 1, i, i + k);
    area -= getarea(i + k + 1, i, i + 1);
    }

    printf("%.9lf\n", ans * 0.5);
    }
  • 评注一 亦可使用点到直线距离公式进行比较:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    int A, B, C;
    auto getkb = [&](int i, int j) {
    i %= n, j %= n;
    A = pos[i].s - pos[j].s;
    B = pos[j].f - pos[i].f;
    C = pos[i].f * pos[j].s - pos[j].f * pos[i].s;
    };

    auto getd = [&](int i) {
    i %= n;
    return A * pos[i].f + B * pos[i].s + C; // 无需 / sqrt(A*A + B*B)
    };
  • 评注二 注意到AA 的位置是逆时针旋转的,可模拟这个过程以代替三分法,将时间复杂度优化到Θ(n)\Theta(n)


  1. A matching of an undirected graph means that we choose some edges from the graph such that any two edges have no common vertices. Specifically, not choosing any edge is also a matching. ↩︎ ↩︎