The 2022 ICPC Asia Shenyang Regional Contest (The 1st Universal Cup, Stage 1: Shenyang)

IDDifficultyTopicStatus
A
B
C⭐⭐Greedy, Implementation0:34:09 (+1)
DBrute Force0:06:36
E(Upsolved)
F⭐⭐⭐⭐Constructive algorithms, Math3:21:40
G
H
I
J
K
L⭐⭐⭐Math, Implementation, Brute Force4:16:23 (+2)
M

C. Clamped Sequence

  • 题意 选择一个区间[l,r][l,r],且rldr-l\leqslant d,使序列bi:=min(max(ai,l),r)b_i := \min(\max(a_i,l),r)S=bibi+1S=\sum|b_i-b_{i+1}| 最大,其中n5000n\leqslant5000

  • 思路 一方面,选择区间后SS 会减小,希望rl=dr-l = d;另一方面,固定ll,希望rr 尽可能大,固定rr,希望ll 尽可能小。综合看,只能取l=ail=a_ir=air=a_i。遍历这2n2n 中取法,计算SS 的最大值,时间复杂度Θ(n2)\Theta(n^2)

  • 注意 仅仅取l=ail=a_i 判断是不行的,如 Hack 数据 a = { 2,6,7,6 }, d = 2

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    void eachT() {
    int n = read();
    ll d = read();

    vector<ll> a(n + 1);
    for (int i = 1; i <= n; ++i) a[i] = read();

    ll ans = 0;

    auto solve = [&](ll l, ll r) {
    ll sum = 0;
    for (int i = 2; i <= n; ++i)
    sum += abs(min(max(a[i], l), r) - min(max(a[i-1], l), r));
    ans = max(sum, ans);
    };

    for (int i = 1; i <= n; ++i) {
    solve(a[i], a[i] + d);
    solve(a[i] - d, a[i]);
    }

    printf("%lld\n", ans);
    }

D. DRX vs. T1

  • 题意 五局三胜,判断胜利者。

  • 思路 出现次数多者胜。

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    void eachT() {
    string s; cin >> s;
    int t = 0, d = 0;
    for (auto c : s) {
    t += c == 'T';
    d += c == 'D';
    }
    cout << (t > d) ? "T1" : "DRX";
    }

F. Half Mixed

  • 题意

  • 思路

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    ll a[maxN];

    void eachT() {
    for (int i = 1; i < maxN; i++) {
    a[i] = 1ll * i * (i - 1) / 2;
    }

    int n = read(), m = read();
    if (n * (n + 1) * m * (m + 1) % 8 != 0) return void(printf("No\n"));

    printf("Yes\n");

    vector<int> v;

    int x = n, y = m;
    bool flag = 1;
    if (n * (n + 1) % 4 == 0) {
    swap(x, y);
    flag = 0;
    }


    ll sum = y * (y + 1) / 4 - y;
    int tot = 0;
    while (sum != 0) {
    int p = upper_bound(a + 1, a + maxN, sum) - a;
    p--;
    sum -= a[p];
    tot += p;
    v.push_back(p);
    }
    while (tot < y) {
    tot += 1;
    v.push_back(1);
    }

    if (flag) {
    string ans;
    bool op = 0;
    for (int i = 0; i < v.size(); i++) {
    for (int j = 0; j < v[i]; ++j) {
    ans += (char)(op + '0');
    ans += ' ';
    }
    op ^= 1;
    }
    while (n--) cout << ans << endl;
    } else {
    bool op = 0;
    for (int i = 0; i < v.size(); i++) {
    string ans;
    for (int j = 0; j < m; j++) {
    ans += (char)(op + '0');
    ans += ' ';
    }
    while (v[i]--) cout << ans << endl;
    op ^= 1;
    }
    }
    }

L. Tavern Chess

  • 题意 模拟《炉石传说》,求双方获胜概率。

  • 思路 模拟。注意概率需要「加权」,即在第一轮有一种情形获胜的概率与在第二轮有一种情形获胜的概率是不同的,后者需要将本轮的概率乘上上一轮为判别胜负的概率。

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
      int n, m;

    struct PROBABILITY {
    double a, b, t;
    };

    struct MINION {
    int a, h, w, die = 0;
    int dies;
    };

    PROBABILITY dfs(bool op, vector<MINION> a, vector<MINION> b, int ta = 0, int tb = 0) {
    PROBABILITY ans = { 0,0,0 };

    if (op) {
    int anum = ta;
    while (a[anum].die == 1) {
    anum = (anum + 1) % n;
    }

    for (int bnum = 0; bnum < b.size(); ++bnum) {
    if (b[bnum].die == 1) continue;

    vector<MINION> atmp = a, btmp = b;
    atmp[anum].h -= btmp[bnum].a;
    atmp[anum].w += 1;
    btmp[bnum].h -= atmp[anum].a;

    if (atmp[anum].h <= 0) {
    atmp[anum].die = 1;
    atmp[0].dies += 1;
    }
    if (btmp[bnum].h <= 0) {
    btmp[bnum].die = 1;
    btmp[0].dies += 1;
    }

    if (atmp[0].dies == n && btmp[0].dies == m) {
    ans.t += 1.0;
    } else if (atmp[0].dies == n) {
    ans.b += 1.0;
    } else if (btmp[0].dies == m) {
    ans.a += 1.0;
    } else {
    PROBABILITY tmp = dfs(op ^ 1, atmp, btmp, (anum + 1) % n, tb);
    ans.a += tmp.a / (tmp.a + tmp.b + tmp.t);
    ans.b += tmp.b / (tmp.a + tmp.b + tmp.t);
    ans.t += tmp.t / (tmp.a + tmp.b + tmp.t);
    }
    }



    } else {
    int bnum = tb;
    while (b[bnum].die == 1) {
    bnum = (bnum + 1) % m;
    }
    for (int anum = 0; anum < a.size(); ++anum) {
    if (a[anum].die == 1) continue;

    vector<MINION> atmp = a, btmp = b;
    btmp[bnum].h -= atmp[anum].a;
    btmp[bnum].w += 1;
    atmp[anum].h -= btmp[bnum].a;

    if (atmp[anum].h <= 0) {
    atmp[anum].die = 1;
    atmp[0].dies += 1;
    }
    if (btmp[bnum].h <= 0) {
    btmp[bnum].die = 1;
    btmp[0].dies += 1;
    }

    if (atmp[0].dies == n && btmp[0].dies == m) {
    ans.t += 1.0;
    } else if (atmp[0].dies == n) {
    ans.b += 1.0;
    } else if (btmp[0].dies == m) {
    ans.a += 1.0;
    } else {
    PROBABILITY tmp = dfs(op ^ 1, atmp, btmp, ta, (bnum + 1) % m);
    ans.a += tmp.a / (tmp.a + tmp.b + tmp.t);
    ans.b += tmp.b / (tmp.a + tmp.b + tmp.t);
    ans.t += tmp.t / (tmp.a + tmp.b + tmp.t);
    }
    }
    }

    return ans;
    }

    void eachT() {
    n = read(), m = read();

    vector<MINION> a(n), b(m);
    for (auto& i : a) i.a = i.h = read(), i.w = 0;
    for (auto& i : b) i.a = i.h = read(), i.w = 0;

    PROBABILITY ans;
    if (a.size() < b.size()) {
    ans = dfs(0, a, b);
    } else if (a.size() > b.size()) {
    ans = dfs(1, a, b);
    } else {
    ans = dfs(0, a, b);
    PROBABILITY tmp2 = dfs(1, a, b);
    ans.a += tmp2.a;
    ans.b += tmp2.b;
    ans.t += tmp2.t;
    }
    printf("%.12lf ", ans.a / (ans.a + ans.b + ans.t));
    printf("%.12lf ", ans.b / (ans.a + ans.b + ans.t));
    printf("%.12lf ", ans.t / (ans.a + ans.b + ans.t));
    }
  • 变式 模拟《Super Auto Pets》,求在随机选择排队方式中,双方获胜概率。

  • 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    int a_atk[maxN], a_hp[maxN], b_atk[maxN], b_hp[maxN];
    void eachT() {
    int n = read(), m = read();
    for (int i = 0; i < n; ++i) a_hp[i] = a_atk[i] = read();
    for (int j = 0; j < m; ++j) b_hp[j] = b_atk[j] = read();

    int alice = 0, bob = 0, tie = 0;

    std::sort(a_atk, a_atk + n);
    do {
    for (int bnum = 0; bnum < n; ++bnum) a_hp[bnum] = a_atk[bnum];

    std::sort(b_atk, b_atk + m);
    do {
    for (int j = 0; j < m; ++j) b_hp[j] = b_atk[j];

    int bnum = 0, j = 0;
    while (iLoveCUC) {
    a_hp[bnum] -= b_atk[j];
    b_hp[bnum] -= a_atk[j];
    if (a_hp[bnum] <= 0) ++bnum;
    if (b_hp[j] <= 0) ++j;
    if (bnum == n && j == m) {
    tie++;
    break;
    }
    if (bnum == n) {
    bob++;
    break;
    }
    if (j == m) {
    alice++;
    break;
    }
    }

    } while (std::next_permutation(b_atk, b_atk + m));
    } while (std::next_permutation(a_atk, a_atk + n));

    printf("%.12lf ", alice / (alice + bob + tie));
    printf("%.12lf ", bob / (alice + bob + tie));
    printf("%.12lf ", tie / (alice + bob + tie));
    }